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In order to treat active phenomena of open systems, we present a mesoscopic- 
level formulation of nonequilibrium thermodynamics, which is adaptable to the 
intermediate level between microscopic description and macroscopic one. In this 
formulation, an open system is represented by a mesoscopic model 9/L = ($, ~-, 
s, o, y). $ is a set of mesoscopically coarse-grained states, each of which has the 
residual entropy s(a) (a ~ $). ~ is a set of transitions T from I(~-)E S to 
F(~-) ~ $, and each ~- E ~ occurs at the transition probability rate 7(r), and with 
the consumption e(~-) of the negentropy stored within the environment. The 
dynamical quantity 7 is related to the thermostatic ones s and o through a 
postulate, individual detailed balance. This scheme is applied to various examples 
such as chemical reactions, reaction-random walks and lasers. A difference- 
operator method for lattice systems is also developed. 

KEY WORDS: Mesoscopic model; open system; negentropy; detailed bal- 
ance; entropy (production); chemical reaction; random walk; laser; heat 
engine of elementary cycles; negative temperature; difference operator. 

1. INTRODUCTION 

There is a set of approaches to irreversible processes and fluctuations called 
the "mesoscopic level of description" by van Kampen, (~) who collected 
under this terminology various semiphenomenological stochastic descrip- 
tions by means of the Langevin equation, the Fokker-Planck (FP) equa- 
tion, the master equation, and their modifications. 2 Such descriptions have 
two characteristics in common. The first is that the element-states over 
which the probability distribution is defined are not in general microscopic 
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quantum states, but are representatives of groups of them, namely, me- 
soscopically coarse-grained states. The second is that the time-evolution !aw 
is closed within the description in a simple form; Markovian evolution or 
ones simply derived from it are usually assumed. These characteristics, 
together with the semiphenomenological nature, are the reason for the use 
of the terminology "mesoscopic level." 

The mesoscopic approach has an enormous advantage in that it can 
fairly easily describe the time evolution of open systems as well as me- 
soscopic-level fluctuations. However, this advantage cannot be made full 
use of in discussing thermodynamic propositions about the second law, 
especially including the effect of the environment, which is usually de- 
scribed on the macroscopic level. The reason for this is the lack of 
mesoscopic thermodynamics, a mesoscopic-level formulation of thermody- 
namics which has a clear connection with macroscopic thermodynamics or 
microscopic statistical mechanics. The purpose of this paper is to supply the 
lack. In particular, it is intended to establish a unified scheme of meso- 
scopic thermodynamics which is useful in clarifying the thermodynamic 
aspects of entropy-decreasing processes accompanied with active behaviors 
seen in relatively small open systems or gatherings of them, such as energy 
conversion by lasing atoms; biosynthesis; active transport and information 
transfer by enzymes in a cell; and computation process of electronic 
machines. (4) 

There are three problems to be solved in constructing the mesoscopic 
thermodynamics. The first is how to express the entropy function of an 
open system whose state is given by a probability distribution p over the 
element-states which are mesoscopicallycoarse grained. Usual definitions (6) 
for it are - k~p In p or - k~p in P/P~t with stationary state P~t. These 
are, however, based on a mere analogy with the statistical mechanical 
definition or a formal correspondence between the second law and the 
H-theorem of master equation systems. It is necessary to take account of 
the effect of mesoscopic coarse-graining as well as not to mix the entropy of 
the system with that of the environment. The second is how to treat the 
environmental entropy change so as to lead to the proper expression of the 
second law of open systems. The environment is not in generat a single 
reservoir characterized by a temperature T, but may have more complex 
structures. For example, it consists of many reservoirs (9'w) with different 
temperatures or has the potentiality of chemical reactions. Hence, this 
problem is not so simple as in the case of equilibrium open systems, in 
which the reservoir effect can be easily taken into account by using the free 
energy instead of the entropy function. The third, on a settlement of the 
above two problems, is to know what postulate should be required in order 
to establish the second law. 
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In this paper these problems are all settled at one time by introducing 
a scheme called a mesoscopic model, which plays the same role in the 
mesoscopic thermodynamics as a microscopic model does in statistical 
mechanics. The mesoscopic model is supposed to provide a basis from 
which macroscopic thermodynamics and various types of mesoscopic de- 
scriptions are derived through prescribed procedures and, if necessary, with 
some limiting or approximation processes. 

The mesoscopic model contains two basic functions, residual entropy 
(r.e.), s(a), defined to each element state a and elementary negentropy 
consumption (e.n.c.), o(z), defined to each elementary process of state 
transition "r, and a fundamental postulate individual detailed balance (i.d.b.). 
The r.e. s(a) means the thermodynamic entropy attached to the element 
state a due to the mesoscopic coarse-graining. By using it the first problem 
is answered; the entropy S(p) is given by the sum of the information 
entropy - k ~ p l n  p and the average of the r.e. ~ps. The e.n.c, o(~-) means 
the environmental entropy production directly caused by the elementary 
transition ~-. Being viewed from the side of the system, this quantity should 
be called negentropy consumption. This terminology is also used in order 
to distinguish it from the total change of environmental entropy which is 
caused by various factors other than the transition ~-. For the second 
problem the following form of the second law is proposed: 

d S - ~ (p,) < K(p,)  (1.1) 

with the negentropy consumption K(pt) of a statept which is defined by the 
average of e.n.c, o(~-) multiplied by the transition probability rate 7(~'). 
Formula (1.1) expresses the statement that the entropy of the system cannot 
decrease more than the amount of consumed negentropy. The third prob- 
lem is settled by the i.d.b, postulate [cf. Section 2.1 (vi)] which establishes a 
relation between s, o, and 7 and guarantees the second law in the form 
(1.1). 

In Section 2, we present a precise definition of the mesoscopic model 
with its interpretations and explain some notations and conventions used in 
this paper. In Section 3, we investigate general properties of the mesoscopic 
model, including definitions of entropy production, equilibrium states, 
connectedness, and potential functions, and derive the second law in the 
form (1.1), fundamental formulas of equilibrium thermodynamics, and 
special expressions of the entropy production. 

The remaining five sections are assigned to examples. In these exam- 
ples we intend to demonstrate how to apply the mesoscopic model scheme, 
and also to develop a method of difference operators which is useful in 
treating lattice systems. The first example (Section 4) is a chemical reaction 
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system, where difference-operator versions of the Fokker-Planck operator 
are introduced. This example affords a basis for analysis of the other 
examples. The second one (Section 5) is a random-walk system accompa- 
nied by a chemical reaction, where the Einstein formula for the diffusion 
coefficient is extended. In the third example (Section 6) the random walker 
of Section 5 is put on a circular lattice and its stationary state is deter- 
mined. The fourth example (Section 7) is a chemical laser in a simplified 
style, where the relations between laser gain and chemical potentials are 
discussed. The last example (Section 8) is the usual three-level laser pumped 
by a high-temperature beam, where we reveal a heat-engine structure of 
elementary cyclic processes contained in the stationary state. In the Appen- 
dix, some properties of translation and difference operators are listed. 

2. MESOSCOPIC MODEL 

2.1. Definition of Mesoscopic Model 

A mesoscopic model ~c = ($, 5", s, o, 7) is defined as follows: 
(i) S is a denumerable set (where elements are called points or element 

states). 
(ii) 5" is a denumerable set (transitions) with the "transition structure," 

that is, for every transition ~- E 5-, the initial point I(~) E g, the final point 
F0" ) ~ g, and the inverse transition r  1 ~ 5- are defined with the properties 

0--1) -1=  % F(T - l )  = I(r and 10 --1) = F0- ) (2.1) 

The sets 5-a. -= (~- ~ ~-;I(~) = a}, 5-.a =--('r~5";F('r)=a}, and 5"a,b ~ { z  
~-; 10-) = a and FO') = b} are all finite, and 5"a,~ = 0 for all a ~ g. 

(iii) s is a nonnegative function on $ (called residual entropy). 
(iv) o is a real function on 5" (elementary negentropy consumption). 
(v) ,: is a strictly positive function on 5" (transition probability rate). 
(vi) Among s, o, and ,/, there is a relationship (called individual detailed 

balance) as follows: 
1 Y0") = ) '0--  l)exp ~-~B [o0") + A,s] V~" ~ 5" (2.2) 

where As  = s(F(,c)) - s(I('r)), and k s is the Boltzmann constant. 
(vii) The state of sYL is represented by a probability distribution p on g. 

The time evolution of the state is given by the master equation 

d p, = Fp, (2.3) 

where the evolution operator F is defined by 

r p ( a ) =  ~ (p(I( 'r))V(t)-p(F('r))V('r-1)} (2.4) 
1-@~-.a 
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(viii) The entropy S(p)  of a state p is given by 

S ( p )  = - k  B ~ p ( a ) l n p ( a )  + ~ p (a ) s (a )  (2.5) 
a ~ $  a ~ $  

(ix) The negentropy consumption K(p)  of a state p is given by 

K ( p )  = ~ p( I (T) )7(r )o( ' r )  (2.6) 

Remarks. (1) If the pairs {~.,~.-1} 0" E ~-~,b) are suitably numbered 
by r = 1,2, . ,  n, the transition ~- ~ ~-~ b can be represented as ~- = a-~ b 

bi r ' r with I ( a ~ = a, F( a ~ b) = b, ~-1 = b ~ a. This notation, by which the 
condition (2.1) is naturally fulfilled, is useful in treating concrete examples. 

(2) By definition, it is obvious that 

= 

= 

%,~ = % . n ~ - . b  

From (vi) and (v) it follows that 

= - 

(2.7) 

(2.s) 
(2.9) 

(2.10) 

(3) Henceforth, the mesoscopic model 9L will be written as 63r6 = (~, ~-, 
s , o , 7 ; S , K , F  . . . .  ) if it is necessary to indicate that the entropy, the 
negentropy consumption, and the evolution operator are expressed by S, K, 
and F, respectively. The list after the semicolon ";" in the above notation 
may be supplied when something is defined universally applicable to all 
mesoscopic models. The fourth position of the list will be occupied by the 
entropy production P defined in Section 3.1. 

2.2. Interpretation of Mesoscopic Model 

The mesoscopic model ~ has the following meaning: 
(i) Let % be the Hilbert space representing the quantum states of the 

system under consideration. The points a ~ $ are interpreted as states 
represented by density operators Oa on % which are disjoint and complete 
in the following sense: N(p~)•  N(Pb) • if a @ b, and ~ s N ( o a )  • = %, 
where N(p) • is the orthogonal complement of the null space N(p) =-- (~/ 
e % ; 0 ~ = 0 } .  

In this situation, a state p, a probability distribution on S, is identified 
with the state represented by the density operator 

p=-- ~_, p (a)p  a (2.11) 
a @ S  
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Following the microscopic definition of entropy, the state p must have the 
entropy S(p) defined as 

S(p) = - k8 Tr plnp = - k .  Tr( 2 p(a)Pa)In(2 p(a)p~) 

= - k s • p ( a ) l n p ( a )  + E P(a)(-ksTr#alnp~) (2.12) 

where the last equality is implied by the disjointness of pa's mentioned 
above. The residual entropy s(a) is, then, interpreted as 

s(a) = - ks Tr palnp~ (2.13) 

This does not disappear even if the specification of the state is complete on 
the mesoscopic level. If pa is a projection onto a subspace A (a) of %, then 

s (a) = k s In dimA (a) (2.14) 

where dimA (a) is, in other words, the number of the microstates contained 
in a. 

(ii) A transition z ~ $- means an elementary reversible process from the 
initial point I(~') to the final point F(r)  which occurs at the t.p.r. ,/('r) 
independently of the other transitions. Between two points a and b there 
may be many kinds of transitions, which form the sets ~-~.b and ~-b,~. If an 
extensive quantity, such as energy, volume, or particle number, is let out 
from the system to the environment by an amount f(l") associated with the 
transition "r (the influx to the system is expressed by a negative amount), 
then the reversibility of the transitions involves 

f(~.) = _f(~. -  1) (2.15) 

The e.n.c, o(z) is measured, as mentioned in the Introduction, by the 
environmental entropy change directly attributed to the transition ~'. 

Finally, it is expected that within each element state a there are no 
sublevel processes that cause environmental entropy change or modifica- 
tion of the density operator p~. 

In this situation, the time-evolution law is naturally described by (2.3) 
and (2.4), and the quantity K(p) defined by (2.5) has the meaning of the 
average negentropy consumption in the state p per unit time. 

From the meaning of o, we can obtain its explicit form in special cases. 
For example, let us consider the case in which the environment is character- 
ized by temperature T, pressure or, and chemical potentials/~i of substances 
i, and the system lets out to the environment E(r amount of energy, v(z) 
amount of volume, n;(~-) number of i molecules accompanied with each 
transition r. Then, 

1 r + T L v(~') - g' o(~-) = -~ ~ -~ n(~-) (2.16) 
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and the reversibility (2.15) implies 

~(~) = - ~ ( ~ - ' )  

v(~) = - v ( ~ - ' )  

ni(,r) = _ ni(~.-1) 

(2.17a) 

(2.17b) 

(2.17c) ~ 

A mechanical  envi ronment  is characterized by no capaci ty for entropy. 
It has no negentropy to be consumed.  In this case, 

o (z )  = 0 (2 .18 )  

Let us consider a more complicated situation. The  environment  con- 
sists of a mechanical  par t  1% and thermal parts R l (l = 1 . . . . .  n) with the 
thermodynamic  parameters  T ~, ~r l, and t*/, and the transition set g" decom- 
posed into ~- = ~-0 t3 ~-1 tO �9 �9 �9 U ~-, (disjoint union) such that  the transi- 
tions r ~ fit are coupled with Rt in the same way as in the above examples, 
for l = 0, 1 . . . . .  n. It should be noted that a transition ~- and its inverse r -  
are contained in the same class of the decomposit ion.  In this case, we have 

c ( r ) + ~ T v ( r ) - ~  ~-Tni(r)  for r ~ -  z (14=0) O ( T )  ~-- (2.19) 

[ 0  for �9 ~ ~o 

and e, v, and n i fulfill (2.17). Moreover ,  the flows of energy, volume, and i 
molecules f rom the system to Rt (l r 0) are defined as follows: 

j Z(p) = ~ p( i ($ ) )V(z)c (~ .  ) (2.20a) 
r E g ' t  

J~(p)  = ~ p(I(~-))-c(~-)v(~-) (2.20b) 

J / ( p )  = ~,, p ( I ( r ) ) 7 ( r ) n ~ ( ~ )  (2.20c) 

These flows are also defined likewise for l = 0 if the transfers of energy, 
volume, or molecules occur  with r E ~'0. The n.c. K ( p )  is, then, written in 
the form 

gt 

K ( p )  = ~2 K ' ( p )  
l = 1  

l 1 vr I . T ~--~') J / ( p )  (2.21) 
/ r  - ~ L ' ( e )  + ~ X ( p )  - 

(iii) The  i.d.b, condit ion (vi) of Section 2.1 is a postulate which is 
supposed to hold in the situation where the above interpretations of $ and 
~- are valid. If one pair  of transitions ( ~-, ~- - l } alone is allowed to occur, this 
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postulate is equivalent to combination of the two requirements for the 
equilibrium state Peq defined on the pair of points (I(r),F('r)}. One is 
Einstein's fluctuation-entropy relation 

1 [ k s  + o ( r ) ]  (2.22) peq(F(r162 = exp 

and the other is the detailed balance condition 

#eq(/('r))7 ('r) = Peq(F('r))2r ('r-1) (2.23) 

These can be required for individual pairs { r, ~'-1}, since all the transitions 
occur independently of one another. Hence, this postulate will be naturally 
acceptable. 

The significance and the usefulness of the postulate can be seen from 
the consequences and examples shown in the following sections and in 
subsequent papers. 

2.3. Notations and Conventions 

The linear space of all real functions on $ is denoted by" 0y($). For a 
subset A c g and f, g E ~Y($), the following notations are formally defined: 

( f ) a =  ~, f(a) (2.24) 
a E A  

(f '  g)A = (fg)A (2.25) 

Especially, ( ) ------ ( )s and ( , ) = ( , ) s .  Note that the value of (f)A is 
definable only when ~AIf(a)l  < m. 

All the operators on ~($)  that appear in this paper are of the 
finite-matrix type, i.e., for an operator L of this type there exists a 
$ • g-indexed matrix (La,b) such that every column and every row have 
only a finite number of nonzero components and 

Lf(a) = ~, L,,bf(b ) (2.26) 
b 

The adjoint operator L* of L is defined by  its corresponding matrix (L%) 
as L% = Lb, a. Between L and L* there is the well-known relationship 

(L ' f ,  g) = (f,  Lg) (2.27) 

for f, g E 0y($) such that ~a~,elf(a)L,,bg(b)l < m. For example, the evolu- 
tion operator s defined by (2.5) is of this type since ~',. and g . ,  are finite 
[cf. (ii) of Section 2.1]. 

( f ,  Fg)  = ~ f(a) ~, { g(I(z))y(r)  - g(r(r))v( ' r - ' )}  
a ~ g  "r~S.a 

= 2 (h,f)y('r)g(I('r)) (2.28) 
"rE~- 
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where 

~ f  = f(F(r)) - f(I('r)) (2.29) 

and (2.7) and (2.8) have been used. Formula (2.29) implies 

r* / (a)  = 7( ,)A,f  (2.30) 

The following conventions are adopted: 

0- (+  oo for an undefined quantity) = 0 (2.31) 

Especially, 

0 ln0 = 0, 01noo/oo = 0, 01n0/0  = 0 . . . .  (2.32) 

Other than this, the usual conventions regarding the arithmetic of oo are 
adopted, so long as the indefinite forms oe/oe and oe - oo do not appear 
or are eliminated by the above rules. 

Remark. In the case of infinite g, there is a possibility that the 
infinite sum in (2.5) or (2.6) does not converge absolutely for some p, and 
S(p) or K(p) is indefinable. Such a state p should be excluded from 
consideration by regarding it as physically unrealizable. This standpoint is 
generally adopted in this paper; we are concerned only with physically 
realizable states, which are assumed to be well-behaving in the situations 
that contain limiting procedures, such as the infinite sum by the operation 
( ) or the exchange of the order of d/dt and ( ) .  By this we can avoid 
entering the maze of mathematical analysis. 

3. GENERAL PROPERTIES OF MESOSCOPIC MODEL 

3.1. Definition of Entropy Production and the Second Law 

(i) Let ~ -- (g, ~, s, a, 7; S, K, I7) be a mesoscopic model. We defined 
the entropy production P(p) of a state p by the sum of the entropy change 
of the system and that of the environment which is caused by the interac- 
tion with the system, i.e., 

d S(p,),=0 e ( e )  = + (3.1) 

where Pt is the solution of (2.3) with initial condition P0 = P. Since (fit) 
= ( r e , )  = 0 ,  

d S(pt)lt=o= (F  p, ( - k ,  In p + s)) (3.2) 

By applying (2.28) to (3.2) and using (2.6), formula (3.1) is written in the 
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form 

e(P) = E P(I(r  - k s z ~ l n p  + As + o(~)] (3.3) 

Moreover, application of the i.d.b, condition yields 

P(p) = k B ~ p(I(~-))y(~-)ln P(I(~))7(~')  (3.4) 

(ii) Since x ln(x/y) >1 x - y  (x >1 0, y />  0) with equality iff x = y, we 
obtain 

and 

e (p )  >~ 0 (3.5) 

e(p)  = 0 iffp(I(r  = ? ( I (~ ' - ' ) )y (~ - - ' )  

From definition (3.1), 

d e(p,)  = -~ s(p,) + K(p,) 

where p, is a solution of (2.3). Therefore inequality (3.5) implies 

d - ~ S (p , )  < K(p,) 

Thus we have had the second law in the form (1.1). 

V~" E ~- (3.6) 

(3.7) 

(3.8) 

3.2. Characterization of Equilibrium States 

We propose the following characterization of equilibrium states: 

A statep is equilibrium iff P(p) = 0 (3.9) 

This type of characterization of equilibrium states is seen in recent pa- 
pers, (5-7) which will be referred to in the last section. The characterization 
(3.9) can be restated in several equivalent forms. From (3.6), we have 

p is equilibrium iff p fulfills the d.b. (3.10) 

where the d.b. (detailed balance) means the right-hand side of (3.6). By 
(2.10), K(p) is written as 

= E p(V(~))~(~- K(p) �89 E~_{p(I(~'))'/(~- ) - ~))a(~') (3.11) 

Consequently, the d.b. implies K(p)= 0 as well as Fp = 0 [cf. (2.4)]. 
Conversely, combination of K(p) = 0 and Fp = 0 implies P(p) = 0. There- 
fore, we have another characterization of equilibrium states: 

p is equilibrium iff Fip = 0 and K(p) = 0 (3.12) 
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Next, let us consider the case in which a is given by (2.19). The flows 
J.  (p) defined by (2.20) are also written in the same way as (3.11) owing to 
(2.17). Hence, the d.b. also implies J .  ( p ) =  0, and this further implies 
K(p) = 0 [cf. (2.21)]. Thus we have 

p is equilibrium iff Fp = 0 and J.  (p)  = 0 (3.13) 

These characterizations are all reasonable for equilibrium states. By 
any of these we can distinguish the equilibrium states from the stationary 
states. The equality of (3.8) holds iff Pt is an equilibrium state. If the 
mesoscopic model 6)re has no equilibrium state, the equality is never 
realized, even though p, is stationary. The relation between this definition 
(3.9) and the usual static one is discussed in Section 3.6. 

3.3. Definition of Connectedness 

Let ~;I~=($,~,s,o,y;S,K,F,P) be a mesoscopic model. A finite 
sequence of transitions (zl,T 2 . . . . .  T,) is called ( n - )  path, iff F(,i) 
=I('Ci+l) for i = l  . . . .  , n - 1 .  Two points a and b e g  are said to be 
connected and written as a ~ b  iff a = b or there exists a path (*l . . . . .  %) 
such that i (~ ' ] )= a and F ( % ) =  b. By definition, it is obvious that the 
relation has the reflexivity a~a,  and the transitivity a ~ b ~ c ~ a ~ c .  It 
has also the symmetry a ~ b ~  b~a,  since the transitions are reversible. 
Therefore, " ~ "  is an equivalence relation. A connected class a of $ is 
defined as a subset of $ whose elements are connected to each other and 
are not to the other points. The set of all the connected classes is written as 
$ / ~ .  The set $ / ~  makes a partition of $, that is, a M fi = 0 if a e a fl for 
a, fl ~ $ / ~ ,  and $ = U a (a E $ / ~ ) .  The mesoscopic model 9re is said 
to be connected iff $/~-- = { g }, i.e., any two points in $ are connected. 

To each connected class a E $ / ~ ,  we define a mesoscopic model 
9L~ = (a,%,s,o, 7; S~,K~,F~,P~), where ~-~ = {~- E ~-; F(~') E a and I('c) 
E a) ,  and s, a, and y are the same as in 63% except that their domains of 
definition are restricted to a or ~-,. Evidently, any connected component is 
a connected mesoscopic model. For a state p of 63T6 and a connected class a 
for which p(a)=--~,a~,~p(a ) > 0, we define a state p~ of sy~ by p~ 
= pip(a). Between ~rc and r there are the following relationships: 

r p ( a )  = p ( a ) r ~ ( a )  if a E a (3.14) 

S(p) = -ks~,p(a)Inp(oz ) + ~,,p(oOS,~(p,~ ) (3.15) 

K(?) = ~ ?(a)K~(?~) (3.16) 
Ot 

P(p) = ~ p(oOP,~(p,~ ) (3.17) 
O/ 
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From (3.14), it follows that if Pt is a solution of/)t = FPt then p,(a) 
= po(a) Vt > 0 for any a E $/---,. Moreover, if p is stationary then p~ is 
also stationary for any a E $ / ~  for which p(a) > O. Conversely if p~ is a 
stationary state of ~3qL~ for a E ~ (where d~ is a subset of $ / ~ ) ,  then the 
states of ~ defined by 

P = E r~P ~; Era = 1, r~ >1 0 (3.18) 

are all stationary, where p ~ is regarded as a state of ~L by assigning zero to 
a ~ o t .  

From (3.17), we have P(p) > p(a)P~(p~). Hence, i fp is an equilibrium 
state of aJlL and p ( a ) ~  O, then p~ is also an equilibrium state of 9]L~. 
Conversely, if p ~ is an equilibrium state of ~ for a ~ ~, then the states 
defined by (3.18) are all equilibrium. A connected mesoscopic model has at 
most one equilibrium state, which is implied by (3.10). Let (~ be the set of 
the connected classes which have equilibrium states, and p~q be an equilib- 
rium state of ~)]L~ (a E ~), which is unique since r is connected. The set 
of the equilibrium states of ~31L is, then, given by 

( ~, r~peaq ~,r~ = 1,r,~> 01 (3.19) 
k aEC ) 

The above considerations show that the properties of mesoscopic 
models can be straightforwardly constructed from those of connected 
models. 

3.4. Definition of Potential Function 

Let ~ = ($, ~-, s, o, 7) be a mesoscopic model. A real function ~ on $ 
is called a potentialfunction of aYL iff it satisfies the equation 

o(~) = A ~  V~ ~ ~- (3.20) 

The potential function ff is said to be normalizable in a connected class a 
iff 

+ s) < (3.21) 

where -~.4 (f)  is defined for f E oy($) and A C g by 

~A( f )=  (exp -~  f ) A (3.22) 

Note that the potential function does not always exist for every mesoscopie 
model. ~ is called a (normalizable) potential system iff it has a potential 
function (normalizable in every connected class). 

The general solution of 

A g = 0 V~- ~ ~ (3.23) 
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is given by 

g(a) = G(8) (3.24) 

where G is an arbitrary function on $ / ~ ,  and d is the connected class 
containing the point a. If eSg is connected, g is constant on $. The potential 
function has arbitrariness of the addition of g. The normalizability of ~ is 
free from the arbitrariness, because ~ ( f +  c ) =  eC/kB~(f) for every con- 
stant c. 

A path (~1 . . . . .  zn) is said to be cyclic iff F(%) = I0-0. In order that 
equation (3.20) have a solution, it is sufficient and necessary that for every 
cyclic path 0h . . . . .  %) 

y,  = 0 (3.25) 
i=1 

The necessity is evident. In order to prove the sufficiency, we specify a 
point a~ for each connected class a. For every a E a we take a path 
0-l . . . .  , ~-,) such that I0-]) = a~ and F0-~) = a, and define a function ~ on 
$ by 

~(a)  = ~ o(r,.) (3.26) 
i=~ 

If (3.25) is fulfilled, the function is well defined, i.e., it is independent of the 
choice of the paths. If I0") = a and F0-) = b, then 

q~(b) = ~ a('ri) + o0" ) = q~(a) + o0- ) (3.27) 
i=1 

Hence 2~q~ = o(~), which shows that q~ is a potential function. 

3.5. Relationship between Potential Function and 
Equilibrium States 

Let OIL be a connected mesoscopic model with a normalizable poten- 
tial function qJ. Then it follows that OTC has a unique equilibrium state peq, 
which is written as 

1 (s + +) (3.28) Peq = ~'(~ q- S ) - l e x p ~  s 

This is easily checked by (3.10) and (3.20). From (3.28), we have three 
statements regardingpeq: 

(i) S(p) + (p,q~) = max iff p =Peq 

1 (ii) peq(a) = exp ~ Is (a)  - Seq + ~/,(a) - ~eq] 

(iii) Seq = ksln Y~(~ + s) - ~eq 

(3.29) 

(3.30) 

(3.31) 
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where Seq = S(Peq ) and ~eq = <~, Pcq>" Statements (i), (ii), and Off) are 
considered to correspond, respectively, to the entropy-maximal principle 
for the equilibrium states of open systems, to Einstein's formula for the 
equilibrium fluctuations, (8) and to the fundamental equation of equilibrium 
thermodynamics. These correspondences will be more clear, if + has the 
form + = h l f  I + �9 �9 �9 + h , f ,  with environmental parameters h I . . . . .  X,. In 
this case, (3.31) leads to 

dSeq = - E hidfieq (3.32) 
i 

where f'eq = ( f ,  Pcq> are treated as functions of X 1 . . . . .  A n. 
Finally, it should be noted that if ~c is connected and has an 

equilibrium state peq, then it also has a potential function ~b, which satisfies 
(3.28) or equivalently, 

~b = ke In Peq - s + const (3.33) 

3.6. Equilibrium Thermodynamics 

Let r be a connected mesoscopic model whose e.n.c. ~ is given by 
(2.16). Assume that for every substance i the number N/of  i molecules can 
be defined as a function on $ with the relation 

n i ( r  ) = - A ~ N  i V'r E sS (3.34) 

This assumption means that the system contains no chemical reactions and 
the numbers of molecules are conservative. Since the volume V and the 
energy E are universally conservative, we have 

v( ' r )  = -A~V (3.35) 

c(~) = - - A E  (3.36) 

In this case, r has a potential function ~b defined by 

1 ~r ~. /zi (3.37) = - ~ E - -~ V + . --~ N i 

If this + is normalizable, the three statements in the previous subsection are 
translated into 

1 (E, p> - ~r ~/ /~ (N/, p> = max (i) s ( p )  - < v ,  p> + . -T i ffp = Peq 

(3.38) 

1{  1 (ii) p~q(a)= exp ~-~8 [ s ( a ) -  S~q] - -~ [ E ( a ) -  Eeq ] 

'B" /s ) 
- - ~ [ V ( a ) -  Veq]--[- ~t" - - T [ N i ( a ) - N i e q ] )  

w h e r e  Seq = S(Peq) ,  Eeq = < E ,  Peq>, "" " �9 

(3.39) 
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1 rr [/re q -- ~ /  /1i (iii) S~q = Y + -~ geq q- -~ . -~ Nie q (3.40) 

where Y = kBln Z(~b + s). Morever, we have 

qr Izi dUie q (3.41) 1 dEeq ..[_ -T dVeq __ E --T dS~q = -~ 

where S~q, Eeq, Veq, and Nie q are treated as functions of T, ~r, /zi. The 
thermodynamic interpretations mentioned in the previous section fit this 
case perfectly. It should be remarked that Einstein's formula for equilib- 
rium fluctuations holds with equality rather than proportionality (s) if the 
usually adopted entropy difference As = s ( a ) -  maxs(a)  is replaced with 
As = s(a)  -- Seq. Seq does not agree with maxs(a)  on the mesoscopic level. 

3.7. K and P of Potential Systems 

L e t  ~ be a connected mesoscopic model with a potential function ~b. 
Then substitution of (3.20) to (2.6) and (3.3) yields 

K ( p )  = ~ p(/(r))y(z)A,q~ (3.42) 
rEa- 

P ( p )  = ~ p ( I ( r ) ) y ( r ) A , ( -  k B In p + s + 6) (3.43) 

which, by (2.28), lead to 

K(,p) = (r,p, q~) (3.44) 

P(,p)  = - k B (r,p, in ,pe-('++)/~" ) (3.45) 

Moreover, if ,pt is a solution of (2.3), then 

d (,pt, in ,pte-( '+~)/k" P(,pt) = - k ,  --~ ) (3.46) 

In the case of normalizabte ~, we obtain by (3.33) 

d (el ,  In et/.Peq) (3.47) e ( , p , )  = - k B - g i  

It should be remarked that formulas (3.42)-(3.47) are all true for noncon- 
nected potential systems, for which (3.33) holds with respect to each 
connected component and any equilibrium state in the set (3.19) can be 
chosen as,peq in (3.47). Formula (3.47) shows that any stationary state,pst of 
a potential system is always in equilibrium, because P(,pst) = O. Hence, if a 
system exhibits some stationary activity with consumption of the ne- 
gentropy reserved in the environment, it must be a nonpotential system. 
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3.8, Decomposition of Transition Set 

Let ~ = ($ ,%- , s ,a , y ;S ,K ,F ,P)  be a mesoscopic model. If %- is de- 
composed into ~- = %-1 t_) �9 �9 �9 U ~-, (disjoint union) such that 

~--'E%-~ if ~-E%-~, / = 1  . . . . .  n (3.48) 

then ~Y~t =(g ,%- t , s ,o ,Y ;S ,K ,F ,  P)  is also a mesoscopic model for t 
= 1 . . . . .  n. Between ~Y~ and ~ l ,  there are the following relationships: 

S ( p )  = Sl(p) ,  l =  1 . . . . .  n (3.49) 

F = F  t +  . . .  + F ,  (3.50) 

K(e  ) = / q ( p )  + . . .  + K~ (3.51) 

e ( e )  = e , (p )  + . . .  + e , ( p )  (3.52) 
These are easily checked. 

The case of the compound environment discussed in (ii) of Section 2.2 
is an example of this decomposition. In this case, if the system has the 
function N i defined by (3.34), then each 9To / has a potential function +t 
such as 

4,~ 0 

~ l =  _ __1 E _ 7r t ~t/ 
V + ~ i  ~ Ni if 14 :0  (3.53) T I 

Therefore, we have from (3.45) and (3.52) 

e ( p )  = - k B  ~ (rp, ln p / e  (~'+s')/kB ) (3.54) 
l = 0  

This type of expression of entropy production has been adopted in the 
study of many-reservoir open systems. (9']~ Note that the expression of the 
type (3:46) or (3.47) is applicable only to potential systems and that (3.54) 
cannot be reexpressed as (3.46) or (3.47) except for special cases (e.g., 
T l =  T, ~r z= ~r, /~/=/~i for l = 1, . . . ,  n), because many-reservoir models 
are, in general, nonpotential systems. 

4. EXAMPLE 1: CHEMICAL REACTIONS IN A CELL 

4.1. Model, Single-Reaction Case 

Let us consider chemical reactions catalytically occurring in a cell 
which is enclosed with a fixed semipermeable wall and is immersed in a 
chemical medium with fixed temperature T and chemical potentials/~i (see 
Fig. 1). First we are concerned with single-reaction case. The chemical 
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Fig. 1. Chemical reaction in a cell enclosed with a semipermeable wall. 
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reaction is expressed by the reaction formula 

vi+A,~-~, vi-Ai+ c o (4.1) 

where f~ is the set of the names of substances concerned in the reaction, 
vi+(~> 0) are the stoichiometric coefficients, A/ represent the molecular 
formula of i, and % is the energy the medium gains in the reaction (not the 
heat, which is defined by e 0 + ~/zi(v~ + -/)i-))- 

The set a is decomposed into the set a '  of substances nonpermeable 
through the wall of the cell and the set ~2" of permeable ones. It is assumed 
that the permeability of a"  substances is so high that their densities are 
completely controlled by the chemical potentials of the medium. We also 
assume that the densities of i ~ ~2 are sufficiently low both in and outside 
the cell. In this situation, the mixture of the ~2' molecules in the cell can be 
treated as that of ideal particle fields each of which is subject to the 
Boltzmann statistics (11) with an effective energy level ~,. and an effective 
degeneracy gi V proportional to the cell volume V for i E ~2'. Here, gi's and 
eg's depend on the physical properties of the medium, especially on the 
temperature. The medium containing ~2" molecules acts as an environment 
for the f~' mixture in the cell. 

Let us construct a mesoscopic model ~ = ($, ~-, s, o, 7) to describe the 
behavior of the f~' mixture in the cell: 

(1) g = ( N = ( N  i , i E a ' ) ~ z a ' ; N  i>10 V i ~ a ' }  
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where Z is the set of integers and N i denotes the number of i molecules in 
the cell for i ~  s g is, mathematically, a subset of Z a' in which the 
operations x + y and mx (x, y E Z a', m E Z) are defined in the usual vector 
sense. 

(2) ~--- ( N--~ N - v; N E $ N (S + v) ) 

U ( N - + N + v ; N E $  n ( $ - v ) }  

where$  + x = ( N + x ; N ~ $  f o r x ~ Z  e ' ,and 

v = u + - v  - with v-+ = (vi+-; i e ~T) (4.2) 

The transition N ~ N -  ( + ) v  ls caused by the reaction in the direction 
-> (<--) of (4.1). 

(3) a has the form (2.16) without the volume term. 

nj(N--~ U -T- v) = T- pj j E s  (4.3) 

((N---)NT- v ) =  + (  o (4.4) 

o (N-- ->NT-v)=  +_(%+ ~] ~ p j ) / T ~ + _ o  o (4.5) 
jEs 

where uj = v/+ - pj-. By using the effective energy levels % the energy of 
the system is expressed as 

E ( N )  = ~ Ni(i~-~-- N . ~  (4.6) 
i Ef~' 

Then it follows from the energy conservation that 

% =  - E ( N -  u) + E ( N )  = v - (  ( 4 . 7 )  

(4) As mentioned above, the system is subject to the Boltzmann 
statistics [cf. (2.14)] 

(g ,v)  N' 
s ( N )  = k B E l n - -  (4.8) 

i e ~ '  Nil 

(5) There is no principle to determine y a priori in the framework of 
mesoscopic thermodynamics, except that it must satisfy the i.d.b, condition, 
i.e., f o r N E $  n ( $  + v )  

1 
+ (N)  = ~/_ (N - r)exp ~BB [~176 + s (N  - v) - s ( N ) ]  (4.9) 

where ,/+ ~ oy($) are defined by 

Iy (N-->N-T-v  ) if N T - v e $  (4.10) 
,/~ (N)  = L 0 otherwise 
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For the sake of the conciseness of expression, we will use the factorial 
function (12) x(~) defined by 

[~ ( x -  1 ) - . . ( x - n +  1) if n =  1 , 2 , 3 , . . .  

x(~) = if n = 0 

[~--I7-1"~x-+~l-v.--(-x---n)z) if n = - l , - 2  . . . .  

(4.11) 

From the definition, it follows that if m is a positive integer, then 

m(,) = [ m ! / ( m -  n)! if n~< m 
(4.12) 

l 0 if m < n  

We also use the following notations for vectors a = (ai) and b -- (b): 

ab= I Ia i  b,, a (b) = I Ia i  (b,), and a!= l-Iai ! (4.13) 
i i i 

Using these notations and (4.12), we have, for N and n E $, 

N ( n ) = 0  if N - n ~ $  (4.14) 

Reaction Rate Coefficients 4,2. 

By definition, the functions 7+ satisfy the conditions 

where 
conditions is fulfilled iff Y_+ can be written in the form 

y• (N)  = C+ (N)N("*-)(gV) -~+- (4.18) 

with arbitrary functions C+ on $ such that 

C_+ (N)  >/0 (4.19) 

and 

C+ (N)  = C_ (N  - p)e %/k" if N - p E $ (4.20) 

7_+ (N)  >/0 (4.15) 

7_+(N) = 0 if N - T - v ~ $ ,  (4.16) 

y+ ( N ) = 7 -  ( N - v)e"~ g V ) - "  (4.17) 

(4.17) follows from (4.8) and (4.9). The set of the above three 

This is straightforwardly checked by taking notice of (4.11) and (4.14). 
If C+_ (N)oc+_ (O) for the thermodynamic limit V o o o  with N f f V  

---> Oi, expression (4.18) shows that the quantities 

k_+ (O) ~ c z (P) g -  "*- (4.21) 
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provide the reaction rate coefficients. Here, notice the fact that N(~*-)/ 
gW*-~O~• ~- for the thermodynamic limit. From (4.20) we obtain the 
equilibrium constant K: 

K =--- k+ (o)/k_ (p) = g-"e "~ (4.22) 

As for the thermodynamic limit of the mesoscopic model, we will have 
a thorough discussion in a subsequent paper. 

4.3. Discrete Version of FP Operator 

The evolution operator F is given by 

I'p(N) =t,(N+ v)7+ (N + ~ ) - p ( N ) y + ( N )  

+ p ( N -  v) ' /_(N- v ) - p ( N ) y _ ( N )  (4.23) 

where, if N + v $ $, we p u t p ( N  _+ v) = 0 and use the rule (2.31). 
Next, let us express 17 with the translation operator U~ and the 

difference operators 3 A~ defined on 6-(Z a') by (A.8) and (A.9) in the 
Appendix. Operator expressions provide interesting information about the 
structure of F as well as convenience of handling. To this end, we identify 
f E 6-($) with the function ] E ~(Z a') defined by ] = f on $, ] = 0 on $c. 
By this identification, q($) is regarded as a subset of ~(Za'). Then, F and 
F* are written in the forms 

F = h ~ +  �9 + A_p,/_ �9 (4.24) 

and 

F* = y + h_ ~ + ,/_ hp (4.25) 

where ~, + are extended over Z ~' by the above-mentioned identification, and 
y+ �9 are defined as in (A.6). In the derivation of (4.25), (A.5) and (A.20) 
have been used. Since F f  and F*f ~ 6-($) for f E oy(g), F and F* can be 
regarded as operators on 6-($). 

By using the properties of h and U listed in the Appendix, F and F* 
are reexpressed in various forms, which have analogy with the continuous 
Fokker-Planck (FP) operator. 

(i) By using (A.15), 

F = A,(V+ �9 -- U_pv_ ") (4.26) 

F * = ( T + - ~ , _ U _ p ) A  , (4.27) 

3 A should not be confused with A defined by (2.29). 
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Expression (4.26) suggests that the flow of probability jt (vector) should be 
defined by 

j,  = ~,u with ~t = ( -  Y+ + U_~y_ )p, (4.28) 

The discrete version of the equation of continuity is, then, as follows: 

p, + A ~  = 0 (4.29) 

In the discrete case, however, another choice of the equation of continuity 
is possible, i.e., 

Pt + A _ ~  = 0 with ~ = (Upy+ - 7 -  )Pt (4.30) 

In this choice, the flow of probability should be defined as 

f i  = - ~ p  (4 .31)  

The difference betweenj  and j '  is merely due to whether the flow is defined 
at the initial points or at the final points of transitions, and they have the 
following relationship: 

j~ = Ujt (4.32) 

(ii) On the analogy of the continuous case, 03) we define the drift 
velocity v (vector) and the diffusion coefficient D (tensor) 

1 v = lim -~E[Nt+ h - NtIN t = N] (4.33) 
h$0 

D=lim ~h E[(Nt+h- Nt ) |  Nt) lN,= N ] (4.34) 
h~0 

where E [ [ ]  denotes conditional expectation, and N~ is the stochastic 
process whose transition probability p(n, tlm) (from N O = m to N t = n) is 
subject to the master equation p = Fp. In order to calculate these quanti- 
ties, we first notice the fact 

lim 1 E[  f(Nt+ h ) -  f (N  t ) lN t = N] 
h$0 

= l im 1 h,o -h ~ f(n)(p(n,  h l N ) -  8N(n)} 

= (f,  F8 N ) = (F'f, 8 N ) = F * f ( N )  (4.35) 

where 8 N is the 6 function concentrated on N [cf. (A.2)]. By this fact, we 
have 

v = F*N = y+ A_~N + ~/_ A~N = a~ (4.36) 

D = �89 {F*N | N - ( r ' N )  | N - N | ( r ' N ) )  

= tip | u (4.37) 
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where we have defined two functions 

~ = ~ ' -  -~,+,  3 = �89 + ' t - )  

F and F* are reexpressed with these functions: 

F ~-- - 1 U  vA2vo~ �9 - - A v A _ v f l  �9 2 - 

= 

F* = a�89 U- .~2~ - 3 A / ~ - .  

where (A. 16) and (A. 17) have been referred to. 

(4.38) 

(4.394) 

(4.39b) 

(4.40a) 

(4.40b) 

These expressions can be interpreted as discrete versions of the contin- 
uous FP operator and its adjoint by making A and U, correspond to 
u .  O / 3 x  and 1, respectively. This interpretation is consistent with the 
definitions of drift velocity (4.36) and diffusion coefficient (4.37). In subse- 
quent papers we will discuss a continuum limit in which (4.39) reduces to 
the FP operator through the correspondence and see bow the properties of 
the discrete case are inherited by the FP operator. 

4.4. PotenUa, Function 

(i) The potential function ~k is defined by (3.20), which, in this model, 
reduces  to the difference equation 

A~ k = a 0 (4.41) 

This has a solution, for example, 

qJ ( N )  = - ~ .  N o  o (4.42) 

where ;k = (;ki; i E ~') is defined by 

~ i = l ( r v i ) - I  if /2i 5d= 0 (4.43) 

~ o  otherwise 

with the number r of i E s such that Pi 4= 0. 
(ii) According to the discussion in Sections 3.4-3.6, the equilibrium 

state of each connected component of G3K is given by (3.28) with the 
potential function ~ if it is normalizable. Let A be a connected class 
containing a point N. Then, 

A = ( N - n v ;  N - n v / > 0  and n E Z }  (4.44) 

where N > 0 means N i >1 0 for all i E s The condition N - nv >/0 implies 

N; N, 
max - -  < n < min - -  (4.45) 
i ~ ' . _  Pi iE~ '+  Pi 
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if the sets f~'+ ~ (i ~ ~ ' : v  i > O} and f~; -= {i ~ ~2':v i < O} are both non 
empty. In the case f~'+ = 0 (or ~2 2 = 121), we have, instead of this, 

m a x - -  < n  or n < m i n  - -  (4.46) 
iEa'_ Pi iE~'+ Pi 

Thus, every connected class A is finite if ~2' ~ 0 and f~'_ + ~ 13, and infinite 
if ~2+ = 13 or f~'_ = 13. In the former case, ~ is, of course, normalizabte for 
every connected class. Even in the latter case, ~p is also normalizable, 
because 

~ A ( ~ + S ) < ~ ( ~ p + S ) =  Z e x p l [ t p ( N )  + s ( N ) ]  
N ~ S  B 

=~i E 1 Ve-~Oo/k.)N~ 
�9 

= E e x p ( g i V e - ~ ~  ) < oe (4.47) 
i 

where we have used (4.8) and (4.42). Thus every connected class A has the 
equilibrium state 

PA ( N )  = ~-~ le-X Noo/k . ( g V ) N / N !  (4.48) 

The mesoscopic model ~ is, then, a normalizable potential system. The 
general expression of equilibrium states of ~ is given by 

P = ~, aAPA; Z aA= 1, a A ) 0 (4.49) 
A @ S / ~  A 

Especially 

Peq ~ ~$(lp  -[- s ) - t e  (s+~)/kB (4.50) 

is an equilibrium state with a A = ~A/NS- 
(iii) By the use of ~p, the operators F and F* are written in another 

form. From (4.9) and (4.41), 

1 A_.(s + ~p) (4.51) Y + = (U_ ~y_ )exp 

Then, by (A.14) 

Y+ e(S+r = U_py_ e (s+r 

which, upon multiplying T.~ (6 + s)-1, leads to 

Y+ fleq = U _ v y _  fleq 

where Peq is defined by (4.50). From this it follows that 

y+ = Bp~q I and y_ (U.B)pg-q I 

(4.52) 

(4.53) 

(4.54) 
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with an arbitrary function B on Z a' such that 

B ~ > 0  

B ( N )  = 0 if N q ~ g N ( $ + v )  

Nakagomi 

(4.55) 

(4.56) 

Here, (4.15) and (4.16) have been taken into consideration. Substitution of 
(4.54) into (4.26) and (4.27) yields 

r = - A , B A _ , p ~ q  z. (4.57) 

I'* = -p[q'A,  B A ,  (4.58) 

The symmetrization technique (14) of FP equations with detailed balance is 
also applicable to F. 

L _  - 1 / 2  1 / 2  ~__ _p~ql/2A, BA ,p~ql/2. (4.59) = Peq _Peq 

The symmetry of L is obvious in this form, and the transformed distribu- 
= , , 1 / 2  is subject to the symmetric evolution equation tion qt -- rtreq 

(It = Lq, (4.60) 

4.5. Expressions for S, K, and P 

By definition, we have 

S ( p ) =  - k B ( p l n p )  + (ps)  

( ( g V ) N )  (4.61) = - - k B ( p l n p )  + ~, k~ p l n ~  
i ~ '  

K(p)  = (p ,7+  -7-)% = (p,F*~,)  (4.62) 

The second equality of (4.62) follows from (3.44) or directly from the fact 

F * + =  (y+ - 7 _  U , ) A _ , ~ =  (y+ - y _  U, )o0=  (y+ - 7 _ ) %  (4.63) 

In this model, the energy flow J~ and the particle flows Jj ( j  E ~') are 
definable: 

J~(P) = (P ,7+  - 7 -  )Co = - (P,  F*E ) (4.64) 

J j (P)  = (P ,7+  - 7 -  ) ( -  vj) = - (p,F*~j) (4.65) 

where E is defined by (4.6), and ~j = X. Nvj with X of (4.43). Although ~/j 
satisfies 

A ~j = - vj (4.66) 

it does not have the meaning of the number o f j  molecules like N i of (3.34), 
but it is related to the number of times the reaction (4.1) occurs. Owing to 
this, expression (4.65) does not hold for the many-reaction case, while (4.64) 
does hold even for that ease (cf. Section 4.6). 
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since the model in this section has a normalizable potential function, 
the discussion in Section 3.7 is applicable to it. Then, we have 

P(p) = (p,F*(-kBln p + s + q~)) (4.67) 

= - k B (p ,  F* In P/Peq) (4.68) 

Other than these, P(p) has various expressions corresponding to the various 
forms of F. By using (4.27) for (4.67), we obtain 

P(p)=( (3 ,+-U_ ,~ ,_ )p ,A_~( -kB lnp+s+~)  ) (4.69) 

which, by (4.51) and (A.14), leads to 

P(p)=kB(~ /+p-  U_,7_p, l n ' / + p - l n U  ~7_p) (4.70) 

On the other hand, substitution of (4.58) into (4.68) yields 

P(p) = k B ( A_~,p/Peq,BA_~,ln ]) /Peq) (4.71) 

If IA_~p/poql << P/Peq, then 

A_. In p/Poq = ln{1 + (ZX_.p/Peq)/(p/Peq)) 
(A_,p/peq)/(p/peq) (4.72) 

Therefore, (4.71) becomes 

P(p) ~ k,  ( p, Bp~q '(A_~ in/9/Peq) 2) (4.73) 

These expressions will be used in dealing with continuum limit or thermo- 
dynamic limit in subsequent papers. Indeed, expression (4.73) is just 
parallel with that of the continuous case. (~~ 

4.6. Many-ReacUon Case 

Let us consider the many-reaction case. The chemical reactions are 
expressed by the following reaction formulas: 

E t'/+Ai ---> E ~'il-Ai q- Co/, l = 1 . . . . .  n (4.74) 
i@~ ~-- iE  ~ 

In this expression, the set f~ is taken to be common to every reaction by 
putting u/+ = pi t -  = 0 for the substance i which is irrelevant to the reaction 
l. The mesoscopic model ~f~ for this case can be constructed similarly to 
the single-reaction model, except that the transition set ~- is given by the 
sum ~-= (_J7=~-i of the single-reaction-type transition sets % associated 
with individual reactions l, i.e., 

where u I = u l+ - pz- with u t-+ = (p}-+, i ~ ~'). The t.p.r. ~ and the e.n.c, a 
are defined for each ~-z in the same way as in the single-reaction case. Since 
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the family (~-i) is a partition of ~- with property (3.48), the expressions for 
S, F, K,  and P are derived from those of the single-reaction model by using 
formulas (3.49) . . . . .  (3.52). The flows J .  are also given by the sum 
J .  = J !  + �9 �9 �9 + J~' of J !  defined for individual ~-i as (4.64) or (4.65). 

There is an essential difference between the many-reaction model and 
the single-reaction model; the former does not have a potential function 
except special cases, while the latter always has it. The potential function ~p 
is defined as a solution of Eq. (3.20), which is, in this case, reduced to 

A_ ~, ~b = ~0 l, l =  1 . . . . .  n (4:75) 

where o0 l is specified for each reaction l in the same way as o of (4.5). The 
equation system (4.75) does not always have a solution; for example, if 
n = 2, p l =  v2, and o~ 4 ~ o~, then obviously it has no solution. As a 
consequence, P, K, and Ji's can take nonzero stationary values. However, J, 
is exceptional owing to the existence of the energy function E: 

J , ( p s t ) = ~ J ~ ( p s t ) = ~ ( F , p s ~ , E )  = (Fpst, E )  = 0  (4.76) 
l l 

Let 

l~ 12 l' 
N---~ N I -~  N 2--~ . . . --~ N '  

be a path from N to N'. The final point N ~ is then expressed as 

N '  = ~ z J +  N (4.77) 
l=1 

with integers z# The total e.n.c. Oto t along the path is given by 
n 

Otot = E ZI Ol (4 .78 )  
l=1 

According to the definition of "cyclic" in Section 3.4, the path is cyclic iff 
~zt~ l =  0. Therefore, the condition (3.25) is restated as follows: 

~.~zzoto=O if ~ ] ~ z J = O  and z z ~ Z  (4.79) 
I 1 

As shown in Section 3.4, this is sufficient and necessary for the equation 
system (4.75) to have a solution. This fact can also be verified directly by 
using (A.19). 

In order to explain the significance of condition (4.79), let us distin- 
guish two cases: (i) the vectors ~l . . . .  , v n are linearly independent; and (ii) 
they are linearly dependent. In the case (i), the equation ~]ztp l = 0 implies 
z l = 0 ( / =  1 . . . . .  n); hence, condition (4.79) always holds regardless of the 
environmental parameters T and t~i on which the Oot'S are dependent. The 
mesoscopic model ~ is, then, a potential system and does not exhibit 
stationary activities for any T and/~i- 
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N .vl 

/ / ~ ( - V  2 ) 

U \ 
N 

Fig. 2. If  pl _ s,2 + p3 = 0, then the above cyclic path  exists. Along this path  the negentropy 
a0 l - o0 2 + o0 3 is consumed,  which must  vanish if the potential function exists. 

In the case (ii), on the other hand, the equation ~ z p  t =  0 holds for 
certain integers z l such that (z 1 . . . .  , z,) 4= (0 . . . . .  0). Then the model ~'C 
becomes a potential system only when o0 l, or T and/~i are chosen so as to 
satisfy (4.79) (see Fig. 2). For example, it is satisfied if the environment is in 
equilibrium with respect to all the reactions, i.e., a~ = 0 for l = 1 . . . .  , n. If 
the environment is not in chemical equilibrium and reserves negentropy to 
be used, then the system may exhibit stationary activity by consuming the 
negentropy. Living cells, in which various cycles of chemical reactions are 
occurring, are considered typical examples of this case. Lasers are also 
placed in this category (cf. Sections 7 and 8). 

5. EXAMPLE 2: RANDOM WALK ACCOMPANIED BY A 
CHEMICAL REACTION 

5.1. Model 

Let us consider a random-walk system illustrated in Fig. 3. The 
particle X moves with one step at a time, left or right on the one- 

/chemical ~ Yv,A; rv?A i " /  / ~ / /  
//medium// / '~-. / 7  ,,// //~// 

V ~ /  X-1 / / "  X X§ / X Z " / / ~ /  
z / j / V /   potentiol energyy 

Fig. 3. React ion-random-walk in a chemical medium. 
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dimensional lattice Z. The lattice is surrounded with a chemical medium 
with fixed temperature T and chemical potentials /*i, and is under the 
influence of a force field which gives the particle the potential energy ~(X). 
Each one-step walk is accompanied by a chemical reaction 

vi+Ai~ ~ ei-A,+ %(X) for X ~ X +  1 (5.1) 
i~f ]  iEQ 

where v~ + and v i- are independent of X. It is assumed that the intrinsic 
property of the lattice site is translationally invariant; especially, the 
coupling energy between the particle and the lattice site is independent of 
X. Then, by the principle of energy conservation, we have 

e(X) = q}(X) - O(X + 1) (5.2) 

The reaction-random-walk like this really appears in the translation 
process of genetic information in a living cell. A ribosome moves on a 
chain of RNA by consuming negentropy through chemical reactions while 
making protein. (is) Similar structure is also seen in the process of replica- 
tion or transcription of the D N A - R N A  system by enzymes. The model in 
this section is concerned with an aspect of these processes and does not 
deal with the process of information transfer explicitly, which will be 
discussed in a subsequent paper. 

The mesoscopic model 62~ -- ($ , ~-, s, o, ,/) describing the reaction- 
random-walk system is as follows: 

(1) $ = Z. X ~ $ represents the position of the particle in the lattice 
Z. 

(2) ~ - = ( X ~ X + I ; X ~ $ } U ( X ~ X - 1 ; X ~ $ )  
(3) s ( X )  = s o (const) (5.3) 
(4) o ( X ~ X  +_ 1) = (1 /T)[eo(X)  - q,(X + 1)] + o 0 (5.4) 

where 

(5.5) o0 = E T 
iE f l  

(5) y satisfies the relation 

1 T+(X)  = ~,_ (X + 1)exp k ~  ( ~ ( X ) -  ~(X + 1)+  Too) (5.6) 

where 

y+_(X) = y ( X - - > X  +_ 1) 

Let us define a function ~b by 

= - T ! + ( X )  + +(x) OoX 

(5.7) 

(5.8) 
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Then obviously 

q~(X+ 1 ) -  + ( X ) =  o ( X + X +  1) (5.9) 

which means that ~ is a potential function of *Z~c. Since ~ is connected, the 
equilibrium state Peq of ~ is given by 

= Z(tp)- 'exp ~ ~p (5.10) Peq 

[cf. (3.28)], if ~p is normalizable in the sense of (3.21). Here, note that we can 
take ~p - s as a potential function, since s is constant. 

The expressions of S, K, F, and P can be obtained in the same way as 
in Sections 4.3, 4.4, and 4.5, by replacing _+ v with -7- 1. For example, 

1 + U_ l A l v -  A~A-ID (5.11) F = A_17 + +A17_ = 2 

1 + U_1 A1 _ DA1A_1 (5.12) I'* = 7 + A I  + 7 A_I = V ~  

where A_+ 1 are the one-dimensional difference operators (see the Appendix), 
and 

v = Y+ - 7 - ,  D = (Y+ + 7 - ) / 2  (5.13) 

These are interpreted as the drift velocity and diffusion coefficient, respec- 
tively, as discussed in Section 4.3. 

5.2. Structure of y 

Since we have assumed that the translational invariance of the lattice, 
the X dependence of Y_+ (X) is attributed to that of q~(X). In order to 
determine more concrete structure of 7_+, we assume the q~ dependence of 
7 +_ as follows: 

Y+_ ( X )  = f ( k ; ' o ( X - - - >  X + 1)) (5.14) 

with a smooth function f. By (5.4), it becomes 

7 +_ = f (  - A• ,q~Ik B r + o o l k ~ )  (5.15) 

Roughly speaking, this assumption means that the effect of the potential 
energy is the same for either direction of the transition. By substituting 
(5.15) into (5.6), we have 

f ( y )  = e Y f ( - y )  (5.16) 

This functional equation has the solution 

f ( y )  = ey/2A ( y )  (5.17) 



596 Nakagomi 

with an arbitrary symmetric function A (y). Therefore, 

(v 1 A• - e x p e l  ( _  1 -~A+ + = A , ,  -v- % (5.18) 

where A is a symmetric positive smooth function. 
If o ( X ~ X  +_ 1) is sufficiently small, i.e., 

IA+_ l* / kB T - oo/ kBI <'( 1 (5.19) 

then (5.18) can be approximated as 

v_+ = A (0)(1 - a+_ lq,/2G T _  o o / 2 k B )  (5.20) 

where we have used the symmetry of A, that is A'(0) = 0, 

5.5. EINSTEIN'S FORMULA FOR DIFFUSION COEFFICIENT 
AND ENERGY CONVERSION 

The drift velocity v and the diffusion constant D were defined by 
(5.12). Let F = -A~q~ be constant. Then v and D are also constant, and by 
using them the flow jt of probability is expressed in the form 

Jt = vlPt-  DAlPt (5.21) 

Note that two definitions (4.28) and (4.31) of the flow coincide with each 
other for the constant 7- Expression (5.21) shows that the definitions of 
drift and diffusion agree, in this case, with the physical ones. (16) 

Now let us see whether the Einstein formula cl6~ 

D =/~k B T (5.22) 

holds in the linear region of F, where/~ is the mobility coefficient defined 
by/~ = Ov/OFIr= o. First, we consider the case Oo = 0. For sufficiently small 
F such that I F / k B T I  << 1, it follows from (5.20) that 

Y_+ = A(0)(1 + F / 2 k B T  ) (5.23) 

Then, we have 

v = y + - y_  = A (0) F~  k B T (5.24) 

D = (y+ + 7 _ ) / 2  = A(0) (5.25) 

which implies (5.22). 
In the case o 0 v ~ 0, by replacing F with F + To 0, we have the same 

result as above. Moreover, we obtain the following drift-diffusion relation: 

( o0) 
v = D k - ~  + ~ (5.26) 

in the region of I(F + Too) /kBT[  << 1. 
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Since (d /d t ) (p t ,X )  = (jr,  AIX) = v, the mean velocity of the particle 
is also provided by v. Relation (5.26), then, shows the interchangeability 
between chemical (free) energy and potential energy. Suppose 0 < -  F 
< Too; then v > 0. Therefore, the particle moves to the right and gains the 
potential energy - F per step with the consumption of the chemical energy 
To O (or negentropy Oo). It is also seen from (5.26) that the loss To O + F in 
this conversion of energy is proportional to the velocity v. 

From another point of view, formula (5.26) provides the condition for 
design of the movement of the particle. In order to make the particle move 
in the right direction, it is necessary to set the force F and the chemical 
potentials/~i so as to satisfy F + ~/~?~ > 0. 

In the above consideration, the temperature T has been assumed to be 
positive. In the case T < 0, the particle moves in the direction in which the 
potential energy increases even if no chemical reaction is accompanying it. 
This situation is applicable to the laser; the position X of the particle is 
interpreted as the photon number of a cavity mode with restriction to the 
positive lattice sites, and the reservoir is interpreted as an assembly of the 
lasing atoms with population inversion or the negative temperature. 4 By 
this interpretation, the reaction-random-walk model represents a laser sys- 
tem without cavity loss. The process of cavity loss can be included in the 
model as a thermal interaction with another reservoir at positive tempera- 
ture. In Sections 7 and 8 we will discuss laser systems from a different 
viewpoint by focusing attention on the active atoms. 

6. EXAMPLE 3: RANDOM WALK ON A CIRCULAR LATTICE 

6.1, Model 

This section is concerned with a reaction-random-walk system on a 
circular lattice (see Fig. 4) as an example of nonpotential systems. The 
situation of this model is set similarly to that of the model in the previous 
section except that (a) the circular lattice is not assumed to be rotationally 
symmetric, and (b) each step X ~ X + 1 is allowed to be accompanied by a 
different chemical reaction. The mesoscopic model EqL = ($, ~, s, o, ,/) is as 
follows: 

( 1 )  s = ( o ,  1 , 2  . . . .  , n - 1 )  

(2) ~ = ( X - ) X +  1 ; X ~ g } U  ( X - - ~ X -  1 ; X E $ }  where the con- 
ventions n = 0 and - 1 = n - 1 are adopted. 

4 It should be noted that the concept of negative temperatures can be consistently included in 
a framework of the heat-engine theory.(17} 
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Fig. 4. Reac t i on - r andom-wa lk  on a c i rcular  lattice. 

(3) Since the rotational symmetry of the lattice is not assumed, the 
internal state of the particle may vary with the sites of the lattice. Hence, 
the r.e. s is a function on $ and is not generally constant. Further 
information is necessary in order to determine the explicit form of s. 

1 (4) a(X-->X+ 1) = oo(X ) + ~ [~(X)  - ~ ( X +  1)] (6.1a) 

1 o ( X ~ X -  1 )=  - o 0 ( X -  1 )+  -~ [ q , ( X ) -  ~ ( X -  1)] (6.1b) 

where q, is a potential energy, and %(X) is defined as in (5.4) for the 
chemical reaction accompanying the transition X ~ X + 1. In this case, u i 
and e o in (5.1) may depend on X. 

(5) The t.p.r. ~, satisfies the i.d.b, condition 

1 y+ (X)  = y_ (X)exp k ~  {~(X) - q,(X + 1) + Too('X) } (6.2) 

where 

./+(X) = ./(X->X+_ l) (6.3) 

This model does not generally have a potential function. The following 
condition is necessary and sufficient for the existence of a potential 
function: 

n - I  

( to )  = ~ %(X)  -- 0 (6.4) 
x = 0  

If this is fulfilled, then tp(X)--= q~(X)/T + ~ x = 0 o ( Y  ) is a potential func- 
tion. It is obviously normalizable since g is finite. If (6.4) does not hold, 
is no longer the potential function. 
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In order to obtain the operator expression of F, we identify f E oy($) 
with f ~ ~ defined by f(a) = f(a) for a E $ and f(a + n) = f(a) for any 
a E Z. By this identification, 6y($) is regarded as the set of f E ~ such 
that U,f  = f (n-periodic functions). In the same way as in the previous two 
sections, the operator F is expressed as 

F = A_t7 + �9 + A l ~ ,  �9 (6.5) 

where 7_+ are extended to the n-periodic functions on Z by the above- 
mentioned identification. Since F f  ~ ~-($ ) for f ~ qr F can be regarded 
as an operator on 6y($). We have various expressions for F in the same way 
as in Section 4 except (4.57). This exception is due to the nonexistence of 
the potential function. Note that the difference equation AI~ p = o 0 -- Al~ / T 
for the potential function ~p does not have a n-periodic solution if (6.4) fails. 

6.2. Stationary State 

Let Pst be the stationary state, i.e., 

/~/7st = A_I('y + - Ul')t_ 1)Ps t --~ 0 (6.6) 

Then 

(7+ - U~7_ l)Pst = c (6.7) 

where e is a constant, which is determined by the normalization condition 
of Pst. Equation (6.7) is equivalent to 

P s t ( i + j ) y ( i + j - n ) - p s t ( i + j + l ) 7 ( i + j + l ) = c  Vi, j E Z  (6.8) 

where 

Define 

y+ (i + n) = y_+ (i) Vi E Z (6.9) 

Pst(i + n) = Pst(i) Vi E Z (6.10) 

j - 1  

1-'[ 7+ (k) ~ if i < j  
k = l  

U(i , j )= 1 if i = j  
i 

v _ ( k )  if i > j  
k = j -  1 

This quantity can be illustrated by a sequence of arrows on the circular 
lattice as shown in Fig. 5. Multiplying both sides of (6.8) by 

j ( j + i , j ) u ( j + i + l - n , j )  ( 0 < i < n - 1 )  (6.11) 
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t - i re.j-/ i. j  =i+j+l-n 

(ct) (b )  ( c )  

Fig. 5. The clockwise arrow and the counterclockwise one which are starting from a site i 
correspond to 7- ( i )  and to 7+ (i) respectively. Diagrams (a), (b), and (c) represent, respec- 
tively, u(i, j )  (i < j ) ,  j ( i ,  j )  (i > j ) ,  and u(i + j ,  j ) u ( j  + i + 1 - n, j )  by taking the product of 
quantities corresponding to the arrows. 

we have 

u ( j  + i, j ) u ( j  + i - n, j )  p~t( i + j )  

- u ( j +  i +  1 , j ) u ( j +  i +  1 - n , j ) p ~ t ( i + y +  1) 

= cu ( j  + i , j ) u ( j  + i + 1 - n , j )  (6.12) 

Upon  taking the summation over i = 0, 1 . . . . .  n - !, this leads to 

u( i, j ) u ( j  - n, j )  Pst(J) - u ( j  + n, j ) u (  i, j )  Pst( j + n) 

n - 1  

= c ~ u ( j  + i , j ) u ( j  + i + 1 - n , j )  (6.13) 
i=0 

Then  

n - I  

Psi(j)[ i~$Y+ (i)- i~$1"[ 7 - ( i ) ]  :Ci=oE u ( j  "I- i, j ) u ( j  + i + I - -  n, j )  (6.14) 

where 

c=Z- l [  ~$ 7+(i)- ie~ j 

n - l n - 1  

Z =  ~,, ~ u ( j  + i, j ) u ( j  + i + 1 -  n, j )  (6.16) 
j = 0  i=0 

From (6.14) and (6.15), one can obtain an expression for P~t. 

(6.15) 

where we have used these facts: Ps t ( i )=Pst ( i  + n), u ( j , j ) =  1, u ( j -  n , j )  
= H i ~ 7 + ( i ) ,  and u( j  + n , j ) =  1-Ii~sT-(i). By the normalizat ion of P~t, 
we obtain 
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Now let us calculate P(Pst) [or K(pst)]. 
P(Pst) = K(pst) 

= ( / ~  Oo) + ( P s t ~ / _ , - A _ I ~ / T -  Oo) 
= ((V+ -- U1]t-)Pst , -~1r  Oo) 

= ( c , - A : ~ / T +  Oo) 

= + (c,, ,o) 
= o ( a 0 )  = 0)  

= Z - ' ( I I v +  ( % )  + I I v -  ( -  o0)) (6.17) 

This formula shows that P(Pst) [=  K(pst)] is given by an average of the 
contributions from the two cyclic paths: 0--> 1 ~ . - .  ~ n -  1 4 0  and its 
inverse 0--)n - 1-0 . . .  ~ 1 ~ 0; the former occurs with the probability 
w+ ~ Z - 11-I'~+ per unit time and consumes the negentropy ( % )  per cycle, 
and the latter occurs with the probability w ~ Z - 11"/~,_ per unit time and 
consumes the negentropy ( -  %)  per cycle. This interpretation of the 
entropy production or negentropy consumption in the stationary state is 
applicable to general mesoscopic models. The generalization will be dis- 
cussed in a subsequent paper through graph-theoretical methods. 

By the i.d.b, condition (6.2), w+ and w are connected as follows: 

1 w+ = w_ exp ~-~ (o0) (6.18) 

Then, 

P(pst) = w_ ( oo)(1- exp -~B ( Oo} ) >~ O (6.19) 

The equality of (6.19) holds iff (6.4) is fulfilled. This fact is, of course, 
consistent with the before-mentioned one that cy~ is a potential system iff 
(6.4) holds. 

The flows Ji(Pst) and J, (Pst) are also written in a form similar to (6.17): 

Ji(Pst) = w+ (Pi) ~- w_ ( -  Pi) (6.20) 

J,(Pst) = w+ (e )  + w ( - c) = 0 (6.21) 

where the last equality follows from (e )  = (#,> - (~)  = 0 [cf. (5.2)]. 

7. EXAMPLE 4: CHEMICAL LASER 

7.1. Model 

In this section we consider a coupling between chemical reaction and 
lasing in a two-level atom. (18) Figure 6 illustrates the model. An atom with 
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/ / / / / / / / / : / / ,  
/ / / "  = reservoir(R] j 

.... " / / / /  

i I 
" / ~ / / / , -  / Y " 2. / 

/ / / / ,  E, cavity mode(C) 
/ / / ~ j /  of -h•-photons 

Fig. 6. Two-level laser pumped by a chemical reaction. 

two levels labeled 1 and 2 is put in an environment which consists of a 
reservoir R (T,/~i's) and a cavity mode C of h~0 photons. The cavity mode is 
assumed to have no (or negligibly small) thermal noise in it and to be 
treated as a mechanical environment. The transitions 1 ~-2 are accompa- 
nied by the chemical reaction 

EPiAi"~eo w i t h  respect to R (7.1) 
i 

and the lasing 

0 ~ -h~0 with respect to C (7.2) 

where (7.1) is an abridged form of (4.1) with ~i = u, + - Pi-, and the lasing is 
expressed as a special case of chemical reactions. 

The mesoscopic model 63% = (g, ~-, s, o, T) for this system is as follows: 

g = (1,2) 

c C 
~- = { 1 ~ 2 , 2 - ~  1, 1-+2,2---) 1 } 

s ( i )  = kBln g(i): i = 1,2 (7.3) 

where g ( i )  is the degeneracy of the level i. 

R 

c 2) 0 o(  ~ = [c[. (2.18)] (7.5) 

TR+ = V R _ exp ~ [o 0 + ,(2) -- s(1)] (7.6) 

l r c = V c exp ~-~ Is(2) - s(1)] (7.7) 
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where 
R C 

7R_+__y(l~_2) and yc =y(1 ~-2)  

Let E(i)  be the energy of the level i (= 1, 2). Then, by the principle of 
energy conservation [cf. (3.36)], we have 

eo = E ( 1 )  - E ( 2 )  = - h c o  (7 .8 )  

7.2. Energy Conversion from R to C 

Let us discuss the condition for the cavity mode C gains energy from 
the reservoir R through the atom in its stationary state. The flow of energy 
from the atom into C is given by 

Jc(P) = h~~ c- p(2) - 3,c+ p(1)] (7.9) 

In the stationary state Pst, this quantity is also regarded as a flow from R to 
C. The condition for Jc(Pst) > 0 is, then, desired. Pst is defined by 

Pst(X)(~/R ..[_ C+ ) .=.Pst(2)(]tR_ .jr. ~C ). (7.10) 

Then 

Pst(~) ~_ (~R 3f.]tC)/(q/R _]..]tC 3r.~tR - .{_.yC) 

By substituting this into (7.9), we obtain 

Jc(Pst)= R + y C + , / R  7C y+ + 

From (7.6) and (7.7) we have 

Hence, we obtain 

where 

yR+ yC_ = yR_ yC e Oo/,~B 

Jc(Pst) = A (e "~ - 1) 

A = h,ov ~_ ~+ (vR + ~+ + ~-  + ~_ )  > 0 

Thus, the desired condition is given by 

Oo>0 

which leads, by (7.4) and (7.8), to 

1 1 
--T ~i. •iPi> l'~hO) 

(7.11) 

(7.12) 

(7.13) 

(7.14) 

(7.15) 

(7.16) 

(7.17) 
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In the case of normal temperature (T  > 0), this condition is reduced to 

~, I~,V,> h~ (7.18) 
i 

In order to convert the chemical energy to the mode energy it is necessary 
to set the chemical potentials so as to satisfy (7.18). On the other hand, if 
T < 0, then (7.17) becomes 

< h,o (7.19) 
i 

which shows that we can obtain the energy flow from R to C without a 
chemical reaction (i.e., v i = 0). These results are quite parallel with those 
obtained at the end of Section 5. 

According to the way of explanation in the previous section, inequality 
(7.16) is interpreted as a condition that must be fulfilled in order that the 

R C 
probability of the cyclic path 1-> 2---> 1 be larger than that of its inverse 

c R 
1-->2-->1. 

8. EXAMPLE 5: LASER PUMPED BY HIGH-TEMPERATURE BEAM 

8,1. Model 

The last example in this paper is a three-level atom (18) placed in the 
situation illustrated in Fig. 7. The atom has three levels i = 1, 2, 3 participat- 

E1 cavity mode(C ) 
of l~%-photons 

Fig. 7. Three-level laser pumped by a high-temperature beam. 
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ing in the laser action, whose level energies E(i )  are set as E ( I ) <  E(2) 
< E(3). It interacts with the reservoir B of temperature T,, the cavity mode 
C of hw c photons, and the beam of htoA-photons from the source A with 
temperature T g ( > TB). The following reactions are assumed to accompany 
the transitions between the levels of the atom: 

0 ~ -  --he0 A for 1 ~<-~- 3 interaction with A (8.1) 

0 ~ qB for 3 ~ 2 interaction with B (82) 

0 ~ ho~ c for 2 ~ 1 interaction with C (8.3) 

From the principle of energy conservation, 

h~o A = E ( 3 ) -  E(1) 

qB = E ( 3 ) -  E(2) 
h~0 c = E(2) - E(1) 

The mesoscopic model ~5~ = ($, if, s, o, y) for this system is as follows: 

$ = (1,2,3) 

A B B 
9- ( 1 --> 3, 3-~ 2~> l C 2 }  = 1, 3---> 2, 2--> 3, 1, 

s( i )  = k B In g( i )  

where g(i)  is the degeneracy of the level 

*3) o(1 ~ = ~- 

B 
_+ 

0(2 ~-- = 0  

YA+ = yA-exp~ IS(3) 

1 Is( 2 ) yB+ = yB exp E 

I yc+ = yc exp E [s(1) 

i .  

h'oA/TA 

qB/ TB 

h A] 
-- s ( l ) - -  - ~ h  

- s(3) + y .  

- s ( 2 ) ]  

A B C 
where yA = y(1 ~ 3), y~ = y(3 ~ 2), and yc_+ = 3'(2 ~ 1). 

(8.4a) 

(8.4b) 

(SAc) 

(8.5) 

(8,6a) 

(8.6b) 

(8.6c) 

(8.7a) 

(8.7b) 

(8.7c) 
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8.2. Heat-Engine Structure of Cyclic Paths in Stationary State 

In order to obtain the stationary state Pst, we can use the method 

where 

where 

= z - 'v*+  (8.10) 

By (8.7), w+ and w_ are related to each other as follows: 

w + -  exp ~__~B ( qB hWA) hw c w_ T,  T A = exp k - - ~  (T/ideal- T/) (8.11) 

h 0 , ) C  60 C 
T8 and T/= (8.12) 

~ideal = 1 TA htgA t0A 

Therefore, the condition for Jc(P~t) > 0 is given by 

T/ideal > 17 (8.13) 

The meaning of T/ideal is the efficiency of the ideal Carnot cycle operating 
between two temperatures T A and T B, while T/ is regarded as the real 
efficiency of the energy conversion from A to C in the cyclic path 
1 --> 3 --> 2 ---> 1 (gain cycle). Hence, condition (8.13) is equivalent to saying 
that the second law in the Carnot sense must be fulfilled in the gain cycle. 
Note that the macroscopic second law P(Pst) >1 0 is always true, whether 
(8.13) holds or not. This is explained as follows: In comparing the gain 
cycle and the loss cycle 1 --> 2 --> 3 ---> 1, the dominant one is the cycle which 
satisfies the second law, and as a result we have the macroscopic second 
law, which represents the mean effect of these two cycles. Summing up, the 

formulated in Section 6.2. The result is 

+ B Ax - ( 8 . 8 )  

pst(3) = Z -,(.yc_ ~/B + ~/B ./A "[" ~/+ r+ ) A  C 

where Z is the normalization constant. Let JA, JB, and arc be the energy 
flows from the atom into A, B, and C, respectively. In the statep~t, they are 
calculated as 

JA(Yst) = - ht'dA(W + -- w _ ) (8.9a) 

JB(Pst) = qB(W+ -- W_ ) (8.9b) 

Jc(Pst) = ht~ - w_ ) (8.9c) 
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following three statements are equivalent: (a) The second law in the Carnot 
sense holds in the gain cycle, (b) the gain cycle is the dominant one, and (c) 

Jc(PsO > O. 
In order to investigate the relation between the efficiency and the 

speed of the conversion of energy (represented by w + -  w_, the net 
number of revolutions along the cyclic path per unit time), it is necessary to 
have further information about the structure of y. However, in the small 
Iniaeal- 7/I region, we can say that the speed w + - w  is proportional to 
~idea~- ~/, as we did in Section 5.3. 

A similar discussion of the heat-engine structure of the laser has been 
given by Konyukhov and Prokhorov (~8) in the context of macroscopic 
cycles. As for the heat-engine theory of the second law, there is a quite 
abstract formulation (17) without the use of such concepts as states and 
quasistatic processes, which will be useful in discussing the heat-engine 
structure of elementary cycles in the space g of element states. 

9. CONCLUDING REMARKS 

The value of the mesoscopic thermodynamics consists in its adaptabil- 
ity to intermediate levels between macroscopic and microscopic descrip- 
tions, and also in its ability to associate the irreversible dynamics of open 
systems with thermostatic quantities. The adaptability is due to the r.e. s, 
which serves as a measure for the degree of coarse-graining. At the coarsest 
extreme, s coincides with the usual thermodynamic entropy, and at the 
finest extreme it vanishes. The t.p.r. ~, is connected with the r.e. s and the 
e.n.c, o through the i.d.b, condition (2.2). o is expressed as Eq. (2.16) or 
(2.19) with thermostatic parameters of the environment, and s is also 
usually given from equilibrium statistical considerations as shown in the 
examples. By the introduction of o, it has become possible to discuss the 
system-environment interaction from the entropy-negentropy viewpoint 
even on a quantitative basis. So it will bring interesting results if applied to 
concrete problems in various fields; for example, Schr6dinger's descrip- 
tion (2~ of the living cell by the use of the negentropy concept will be more 
definitely established in the mesoscopic thermodynamics. 

Schnakenberg's work (5) is similar to ours in the point that both are 
concerned with the thermodynamics of master-equation systems. However, 
the two are essentially different: The aim of the former is to establish a 
formal thermodynamiclike structure on the basis of master equations with- 
out real linkage to existing thermodynamics and statistical mechanics, and 
hence his formalism does not contain such quantities as our o and s which 
realize this linkage. As a result, his definitions of entropy production and 
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equilibrium state are different from ours, although there are some similari- 
ties in appearance, except a special case that the set ~-a,b contains at most 
one element for any two points a and b. 

Alexandrowicz (6~ has introduced a quantity called "detailed imbal- 
ance," which is equivalent to Schnakenberg's entropy production. He has 
attempted to relate the quantity to real entropy change by taking into 
account the environmental effect, though restricted to an equilibrium 
reservoir. 

A more complex environment that consists of many reservoirs with 
different temperatures has been treated by Lebowitz et al., (9~ who give a 
sensible definition of entropy production for such many-reservoir open 
systems. The treatment has suggested the i.d.b, condition and our definition 
of P. Various expressions of P are connected with each other through the 
i.d.b, condition, as shown in Section 3. 

The plan of subsequent papers is as follows: (a) As a generalization of 
example 3 (Section 6), graph-theoretical expressions are given to the en- 
tropy production and the flows in the steady state. We will there propose a 
statistical mechanics of steady states on the basis of statistics over the 
elementary heat engines or cycles (cf. Sections 7 and 8). (b) Continuum 
limit of the mesoscopic model is discussed to know how the i.d.b, postulate 
is inherited in a continuous case (cf. Section 4), where the thermodynamic 
limit is also treated in the same framework. (c) The role of the projection 
operator method in the mesoscopic model is clarified. (d) The mesoscopic 
model is applied to the case of variable or finite-size environment, where 
synergetic phenomena will be investigated including nonlinear response to 
the change of environment. (e) By improving the reaction-random-walk 
model (Section 5), we present a mesoscopic model which describes the 
information transfer in the DNA-~ RNA ~ protein process, the so-called 
central dogma, where the relation between information and negentropy 
consumption will be qualitatively calculated. (f) And, concrete examples 
will be taken in physics, chemistry, biology, economics, and technology. 

ACKNOWLEDGMENT 

The author expresses his gratitude for encouragement received from 
Professor H. Hasegawa. 

APPENDIX: TRANSLATION AND DIFFERENCE OPERATORS 
ON A LATTICE 

(i) Let ~(Z d) be the set of all real functions defined on d-dimensional 
lattice Z d. The linear combinations nx + my and a f  + fig and the product 
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fg are defined in the usual sense for x, y ~ Zd; m, n E Z; f, g E ~ and 
a, fi E R. The notation ( , ) is used in the same way as (2.25) with A = Z d. 

Let s be the set of finite-matrix-type operators (cf. Section 2.3) defined 
on ~-(zd). For L1, L 2 E ~ and f, g ~ ~(Za), the product L1L 2 E ~ and the 
linear combination f L  l + gL 2 are defined by LILzh = LI(L2h ) and ( fL  l + 
gLz)h = f (L lh  ) + g(L2h ) for any h E ~ 

The adjoint operator L* @ ~ of L ~ fi is defined in Section 2.3 and is 
characterized by 

(6n,L*6m)=(~m,L~rt), n , m ~ Z  d (A.1) 

where 6, ~ ~ is the 8 function concentrated on n, i.e., 

' (1  if n = n '  (A.2) 
6 . ( n ) =  0 if n ~ n '  

By definition, it is obvious that for L, L1, L2 E $ and f, g ~ ~ 

L** = L (A.3) 

(L,L2)* = L~L~ (A.4) 

( f r ,  + gL2)* = L t f  . + L~g.  (A.5) 

where f .  ~ ~ is defined by 

f . h = fh Vh E q(Z a) (A.6) 

Note that the identity 

f . L = f L  V f  ~ ~(Z a) and VL E ~ (a.7) 

(ii) For every u ~ Z d, the translation operator U~ ~ s and the differ- 
ence operator A ~ ~ are defined by 

U,f(n) = f (n  + u) V f  ~ ~ (A.8) 

A = U . - I  ( i .9 )  

where I is the identity operator. The family (U~:u E Z a) makes a Z a- 
parameter group, that is, 

U,+,, = U,U,, and U 0 = I (a.10) 

The following properties are easily checked from definition, where f is 
an arbitrary one in ~ 

(a) Any two out of U,,, U~,, h e, and Ap, are commutable. 

(b) U~f . = (U~f)U~ (A.11) 

(c) ~J .  -- (A J )  u~ + f ~  (A.12) 
A f . ' =  (A , f ) .  +(U~f)A (A.13) 

(d) U~g(f) = g (U. f )  (A.14) 
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where  g is a rea l  f u n c t i o n  on  R, a n d  the  c o m p o s i t i o n  f u n c t i o n  g ( f )  ~ ~ 

is d e f i n e d  b y  g ( f ) ( x )  = g ( f ( x ) ) ,  

(e)  A~ = - U A_~ (A.  15) 

(f) A , - A  ~ = ( I +  U _ ~ ) A ~ =  U_~A2~ (A.16)  

(g) A, + A _ ,  = - A A _ ~  = U_~A2 (A,17)  

(h)  h,~ = U~" - I = (h~ - I ) " -  I 

n k 
(A.18)  

k = l  

(i) A~I + . .  +~, = ~ U~ ,+ . . .  +~_A~k (A.19)  
k ~ l  

(j) U* = U_  ~, A* = A_ ~, ( f . ) *  = f .  (A.20)  
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